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Relations are obtained to calculate the drag and convective transfer coefficients 
in beds of spheres located in a lengthwise flow in narrow annular slits. 

Thin beds of spheres are used in a number of heat- and mass-exchange units. In these 

units, inlet, outlet, and wall phenomena affect the integral characteristics of flow and con- 
vective exchange. Examples of such units are selective catalytic reactors or certain types 
of channel chemical reactors [i, 2]. The available empirical data [i] discusses features of 
heat and mass exchange in these boundary sections of relatively large (compared to the dia- 
meter of the spheres) beds. However, there is not sufficient data in the literature for the 
case when the sizes of these sections are comparable to the size of the bed and the above- 
mentioned features become predominant. 

We previously studied the porosity of a spherical bed located in a narrow annular slit 
[3] and convective transfer with transverse flow in thin beds of different thicknesses [4]. 
The goal of the present study is to investigate thin beds of spheres in a lengthwise flow. 

A study was made in [5] of the fluid resistance of a rectangular channel with a bed of 
spheres for relatively low values of the ratio of channel width to sphere diameter (eight 
or more). Lower ratios are also of practical interest. Results were reported in [i] from 
a study of the drag of a cylindrical channel with a bed with the ratio D/d = 1.18-1.43. How- 
ever, these results cannot be applied to the case of flow in annular slits without first 
conducting special investigations. 

The experimental method used was as follows. A bed of ball bearings of diameter d = 
2o5-10 -3 m located in an annular slit between a tube and coaxial rod was exposed to an iso- 
thermal descending flow of air (T = 292-295~ The width of the slit was varied by changing 
the diameter of the rod. To increase measurement accuracy at low flow rates and reduce the 
dependence of the drag on the velocity profile at the inlet, we chose to have a fairly long 
bed -- L/d = i00. The ratio of the external and internal diameters of the channel was varied 
in the range DI/D2 = 1.15-2.7. The relative hydraulic diameters of the channels and the 
porosity of the beds are shown in Table i. 

Air flow rate was measured with a diaphragm or a GSB-400 gas meter. Atmospheric pressure 
was monitored with an aneroid barometer. The pressure gradients on the diaphragm and over 
the length of the bed were measured with U-shaped liquid-column gauges. Pressure was sampled 
at ii points located evenly along the channel 2.5-10 -2 m from each other. To average out 
possible random deviations of static pressure, three holes 0.8.10 -3 m in diameter were 
drilled in the external tube in the measurement section with an angular spacing of 120 ~ . 
The holes were connected to a manifold. 

The equivalent drag coefficient was determined in accordance with [i]: 

2AP9  ~3 d 
- -  G 2 a* L " ( 1 )  

The specific surface of the wetted surface was calculated with and without allowance 
for the surface of the walls: a* = 6 (i - E); a~a = 6 (i - E) + 3/6 h [i]. The error of 
fe for a confidence level ~ = 0.95 was 6-8% in relation to 6 h. 
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TABLE i. Results of Analysis of Tests in the Study of Fluid 
Resistance (D~ = 4.10 -2 m; L/d = i00) 
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Fig. i. Dependences: a) of the complex l ( _ d P t  
~u\ dx] 

b) of  t h e  d rag  c o e f f i c i e n t  on t he  R e y n o l d s  number:  
4) 4; 5) 2.12. 

(i0-9 m 2) on u (10-5 m-~); 

i) ~h = i0; 2) 7.96; 3) 5.96; 

TABLE 2. Results of Analysis of Experi- 
ments in an Investigation of Convective Ex- 
change (D~ = i.i0 -2 m; L/d = 25.8). Nu~/Sc I/3= 
A Re~ 

Parameter 

S 
A 
n 

3,87 

0,49 
0,46 
0,58 

6h 
6 , 3 2  

0,45 
0,504 
0,58 

10,2 

0,40 
0,546 
0,58 

The nonlinear generalization of Darcy's law in-the case of unidimensional flow can be 
written in the form [5] 

dP __ F u-F c 
dx k - - ~  pu2" 

(2) 

Using drag coefficient (I) and Eq. (2), it is not hard to obtain the following binomial 
relation for fe: 

re= c___~. + ~ ,  
Ree (3) 
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t 
F i g .  2. D e p e n d e n c e s :  a)  o f  N u ' / S c  1/3 on t h e  R e y n o l d s  number b) o f  NUe/ 
Sc~/3 on t h e  e q u i v a l e n t  R e y n o l d s  number :  1) ~h = 1 0 . 2 ;  2) 6 . 3 2 ;  3) 3 . 8 7 .  

where Co = 8a3d2/(a*)2k is the coefficient with the viscous term of resistance; c i = 
2cc3d/a*k is the inertial term of resistance. For sufficiently large beds of spheres, the 
constant c entering into the inertial term of resistance c i is equal to 0.55 [5]. With 
allowance for the Coseny--Karman equation for the permeability of spheres [5] 

k = ~:3d2 

5 [6 (l -- e)] ~ 
(4) 

the constants Co and c~ for the case L/d >> I, d/d >> i, and s = 0.38 are equal to Co = 40 
and c i = 0.58. Thus, the following relation is valid for sufficiently large beds 

4O 
/e -- Re / 0.58. (5) 

O 

It should be noted that the inertial term of resistance in the Ergan equation [i] is 
also equal to 0.58. 

We change Eq. (2) to the form 

1 ( d P )  1 c u 
~u d x  k + V k  4, (6) 

Having  c o n s t r u c t e d  Eq. ( 6 ) ,  we c a n  f i n d  c and k .  The l a t t e r  q u a n t i t i e s  u n a m b i g u o u s l y  
d e t e r m i n e  t h e  d r a g  c o e f f i c i e n t  ( s e e  Eq. ( 3 ) ) .  The g i v e n  method was s u c c e s s f u l l y  used  i n  [5] 
f o r  i n c o m p r e s s ~ l e  f l o w .  I n  p r a c t i c e ,  t h e  method can  a l s o  be  u s e d  f o r  c o m p r e s s i b l e  f l o w  i f  
&0/Pz < 0 . 2 .  I n  t h i s  c a s e ,  d P / d x  i s  r e p l a c e d  by  AP/L and t h e  f i l t r a t i o n  v e l o c i t y  u i s  
r e f e r r e d  to  t h e  m i d d l e  s e c t i o n  a l o n g  the  c h a n n e l .  The c o M i t i o n  a P / P l  ~ 0 .16  was s a t i s f i e d  
in our experiments. 

1( dP I (u~ Figure la shows the relations ~\__~]=~\~/ for different 6 h. It is evident that 

the relations are linear even when the pressure gradient is not constant along the bed. Table 
1 shows the results of a least squares analysis of the data in the form (6). It follows from 
the table that analysis of the data with allowance for the surface of the walls, as recom- 
mended in [i], does not make it possible in the present case to obtain a single relation for 
different 6 h. However, such an analysis is physically more valid and convenient, since in 
this case the coefficient c~ a is nearly constant for different valdes of 6 h (except ~h = 2.12) 
and is equal to about 40. 

The results for drag are shown in Fig. ib, from which it is evident that the data calcu- 
lated from Eq. (3) (solid lines) agrees well with the test data. One of the equations obtained 
shows that the drag coefficient is quite dependent on ~h" Thus, at Re~ a = 700, a change in 
~h from i0 to 4 leads to a decrease in fwa by a factor of 1.8. A similar effect was noted in 
[i, 5]. This can be interpreted physically as follows. The contribution of the wall sections 
of the bed to the total drag obviously increaseswith an decrease in ~h" Flow in the immediate 
vicinity of the wall (#t a distance d/2 from it) differs from flow in the central region of 
the bed. In the first case it is evidently structurally similar to flow in channels. This 
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comparison is more valid if we consider that mean bed porosity is 15-20% higher in a wall 
region of width d/2 than in the center. An estimate shows that in an inertial flow regime 

such as at Re e = 1500, the drag of a bed of spheres with a porosity ~ = 0.4 is roughly one 
order greater than the drag of a system consisting of a group of cylindrical channels of 
diameter D = d = 2~d/3(i - c) and having a total area equal to the area of the through 
section (crossesection) of the bed. Numerical estimates obtained from comparison of flow 
in the wall region and flow in channels correspond to the change in the drag coefficient with 
a decrease in 6 h that was obtained in the experiment. This provides grounds for suggesting 
that the decrease in the drag of beds -- more exactly, in the inertial term of drag -- with a 
decrease in 6h is due to a change in hydrodynamic flow conditions in a narrow wall region 
of width d/2. 

The deviation of the data for 6 h = 2.12 from the general law is evidently due to the 
ordering of the bed structure. In this case, there is practically only one layer of spheres 
between the two walls. The walls "organize" the mutual location of the spheres and it be- 
comes more correct to speak of a packing rather than a bed of spheres. According to the data 
in [i], the drag of such packing may be either higher or lower than the corresponding value 
for beds of the same porosity. 

The measured porosity s = 0.441 at ~h = 2.12 is nearly the same as for a packing in which 
the centers of adjacent spheres lie at the vertices of a regular triangle with a side d. If 
we continue to compare flow in the wall region with flow in channels, then in the present 
case (~h = 2.12) the channels would be directed at a 30 ~ angle to the tube generatrix and 
additionally twisted about their circumference, This would lead to a 15% increase in the 
length of the path travelled by the flow and thus a similar increase in drag. These circum- 
stances make it possible to understand why there is no further reduction in drag at 6h = 2.12. 

The following relation can be recommended for the drag coefficient in the case of 

lengthwise flow over a bed of spheres (6 h ~ 4) 

~wa 40 
fo -- + 0.5811 - -  1.46 exp(--O.2166h)]. (7) 

R% wa 

It should be noted that with sufficiently large values of ~h' Eq. (7) turns into Eq. 
(5) for sufficiently large beds. Experiments were conducted at Re~ a = 20-700. However, 
considering that the inertial term can be considered constant at Re~ a ~ 2000 [i], the upper 
limit of applicability of Eq. (7) with respect to the Reynolds numbers can be extended to 

2000. 

The permeability of beds of spheres can be described by a relation analogous to the 
Coseny--Karman equation (4) to within 8%, the only difference being that the specific surface 

is calculated with allowance for the surface of the walls 

k = (8 )  
5 [6 (1 - -  ~) + 3/ah]~ 

To find the pressure distribution along the bed, we integrate Eq. (2). Taking the 
equation of state of the gas p = Pq/RT into consideration, we obtain 

( ~ c ) 2GRT 
P ~ - - P 2 ( x ) =  T+-vTG --x. (9) 

N 

The deviation of the theoretical pressure distribution determined in accordance with 

(9) from the experimental distribution is no greater than 4% (6 h ~ 4). This comparison 
shows that Eq. (9) is sufficiently reliable, thus making it possible to determine pressures 
over the length with an isothermal gas flow. The porosity of the bed for a given 6 h can be 
found from [3]. Permeability is determined from Eq. (8), and the inertial term c is calcu- 
lated through c~ a (see Eqs. (3) and (7)). 

i 
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In the general case, the problem of integrating Eq. (2) for a nonisothermal flow can be 
solved numerically by an iterative method. To obtain an approximate analytical expression, 
we adopt the following assumptions: I) the temperature distribution is uniform and the 
gas temperature in a fixed cross section is equal to the temperature of the spheres; 2) the 
absolute viscosity is independent of pressure, while the temperature dependence is expressed 
by the equation D = aT I. It is also necessary to prescribe a law of temperature change 
lengthwise. We will perform a calculation for the two temperature distributions encountered 
mo~t often: i) linear -- T(x)/TI = 1 + x (0 - I)/L; 2) exponential -- T(x)/TI = exp[xln@/L] = 
@x/L. Using the definition of mean temperature over the length 

~(x) 1 
= ~ T(s) ds, (10) 

x 
o 

by integrating (2) we obtain 

p 2 _  p2 (x) _ ~2GRx ~ (x){ V[Tefk (x)] @ g'~C G}, (11) 

1 L Tl+Z~ +z~ [~(L)12_4} 1/ = is the effective "temperature; T(x) = TI �9 where Tef (x) l @ 10 x AT.T (x) 

[1 -k x(O--  1)/2L], l 0 ~ 2 for  a l i n e a r  tempera ture  d i s t r i b u t i o n ;  T(x) ~ LTi[O x / L -  1]/[xlnO], 10 = 1 
for  an exponent ia l  d i s t r i b u t i o n .  

I t  can be shown tha t  a t  the l i m i t  a t  AT + 0 Eq. (11) becomes Eq. (9) fo r  i so thermal  f low. 
We ob ta in  the fo l lowing equat ion  from (11) fo r  the t o t a l  p re s su re  g r a d i e n t  

p 2 _ _ p 2 _  2GRL ~(L){~[Tef (L)] b c_ G}. (12) 
~1 k vlk 

The drag coefficient for nonisothermal flow can be calculated from Eq. (7) at the tem- 
perature Tef. The mean density p (see Eq. (i)) is determined from the relation p = (pITI~- 

92T2)/2T (L). 
The relation Tef(L)/T(L ) will be equal to 

Tel(L) [ 1 0l+2--1 ] l/t 2 
T(L) t@2 1 (0 , _  1) lq-@ 

2 

for a linear temperature distribution and 

Tef (L) [ 1 OZ+i--1 ] ~/l In@ 
T(L) l +  1 @--1 0 - - 1  

for an exponential temperature distribution. 

It is evident from the expressions obtained that the ratio Tef(L)/T(L ) is no less than 
unity in magnitude and depends on the amount of preheating of the gas O. The value of l 
ranges _within 0.6-0.85 for most gases (H=, Ar, He, N2, CO=). At such values of l, the ratio 
T^f(L)/T(L) is very slightly dependent on I. An estimate shows that the difference of Tef(L) 
f~om ~(L) at 0 < 2.5 is less than 5%, i.e. the total pressure losses with nonisothermal flow 
can be calculated from the mean temperature of the gas. This conclusion was confirmed 
qualitatively in [7], where itwas shown experimentally that data on drag with an exponential 
change in temperature lengthwise (0 ~ 3) is described well by the relation for isothermal flow 
at the mean temperature. However, despite the agreement of the total pressure gradients 
calculated for nonisothermal flow at Tef and isothermal flow at the temperature T(L) with 
0 < 2.5, the pressure distributions over the length may differ for the two cases in question. 
If 0 > 2.5, then the thermophysical properties should be referred to the temperature Tef. 
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We chose a mass-exchange method -- specifically, the ion-exchange method -- to study con- 
vective exchange in thin beds of spheres in a lengthwise flow. The use of this method makes 
it possible to isolate the convective component and exclude other exchange components (such 
as conduction and radiation) which complicate methods based on the development of heat flow. 
The analogy between heat and mass transfer processes taking place under certain conditions 
[i, 4] makes ~t possible to use the data obtained for convective heat transfer as well -- 
Nu~/Sc I/3 = Nue/Pr ~/3. Moreover, the chosen method is relatively simple and quick and is 
adequately proven (see [7] for example). 

The specific method used in our experiment and the unit employed were described in [4]. 
The sorbent was a monodisperse bed of KU-2 resin with a grain diameter of 0.775.10 -3 m, 
while the sorbate was uranyl-nitrate UO2(NOa)2. The concentration of sorbate in the distilled 
water pumped down through the bed was 2-10 -3 kg/m 3, while the pumping time was 20-45 sec. 
The experimental conditions were such as to ensure external diffusive sorption kinetics. 
The bed of granules was located in an annular gap between a tube and a coaxial rod. The 
diameter of the rod was varied. A bed which was relatively long (L/d = 25.8) was chosen to 
alleviate the effect of inlet and outlet phenomena (including the effect of the inlet velocity 
profile) on the mean coefficient of convective transfer. Some of the geometric characteristics 
of the channels are shown in Table 2. As can be seen from the table, the porosity of beds 
of ion-exchange resin located in narrow annular slitsdeviates somewhat from the relation 
E = E(~ h) obtained in [3] for metallic spheres. This is due to features of formation of the 
structure of beds of ion-exchange-resin granules. These granules may adhere to each other 

and the wall and form small cavities. However, the method used to analyze the results in 
equivalent parameters makes it possible to recalculate the data for the case of noninter- 
acting (such as metallic) spheres, even if the porosity of the bed differs some from the 

porosity of the resin bed. 

Ion-exchange sorption occurred on the surface of the resin molecules, but not on the 
channel walls. This allows us to assume that our tests modeled convective heat transfer in 
flow through a bed of spheres located between two adiabatic walls. The test results were 
analyzed in the form of the diffusion Nusselt number determined from parameters of the 

internal and external models in the form 

N u ' =  [~d ; Nu" 2e Nu ' .  
D* e 3 (1 -- 8) 

The error of the diffusion Nusselt number corresponding to a confidence level ~ = 0.95 

was 8-9% for Nu' and 10-11% for Nu$. 

The ratios Nu'/Scl/3(Re) for three investigated values of ~h are shown in Fig. 2a. 
The solid lines were obtained from analysis of data by the least squares method in the form 
Nu'/Scl/3 = AoRe n. The standard deviation of the test results from the relations obtained 

was 4.5-6.0%. The dashed line in the figure shows the relation for a single sphere in a 
free flow recommended by S. S. Kutateladze [i] (with Pr = i): 

Nu = 2 + 0.03 Re ~ 54 p r  I / 3 + 0.35 Re ~ 58 P r '  / 3 (13) 

The empirical data (Fig. 2a) lies considerably above Eq. (13), which indicates an 
intensification of heat transfer compared to a single sphere in a free flow. It is also 
evident from the figure that the data is clearly stratified for different values of the 
relative hydraulic diameter. Thus, the value of Nu' was 56% greater for 6 h = 10.2 than for 
6h = 3.87. However, the relations shown in Fig. 2a pertain to different values of porosity, 
so we recalculated the data in parameters of the internal flow model (see Fig. 2b). The solid 
lines in the figure were also obtained from a least squares analysis of data in the form: 

Nu~/Scl/~ = ARe~ (Table 2). 

It is evident from Fig. 2b that analysis of the results in equivalent parameters did 
not make it possible to reduce the data on convective transfer in thin beds to a single 
relation. However, such an analysis diminishes the stratification of the data compared to 
an analysis using the external flow model (see Fig. 2a). The stratification of the relations 
Nu~/Scl/3 = ~ (Ree) for different ~h cannot be attributed to the experimental error. Rather, 
it is a reflection of the laws of convective transfer in the media examined. Our data [4] 
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on convective transfer for a fairly large bed L/d = I0, D/d = 12.9 agrees to within 4% with 
the data obtained here for longitudinal flow in a thin bed with 6 h = 10.2. This means that 
boundary phenomena have almost no effect on the exchange characteristics of beds in a longi- 
tudinal flow in annular slits at 6 h ~ i0. It should also be noted that the walls have almost 
no effect on mean porosity [3] at 6 h ~ 12-14. The decrease in the coefficient of convective 
transfer with a decrease in 6 h can be attributed to the greater velocity of the flow in the 
wall region and the corresponding reduction in velocity in the central region, which is 
mainly responsible for exchange. A change in hydrodynamic conditions in the wall region of 
width d/2 may also have an effect on the mean Nusselt number. 

It also follows from comparison of the results on convective transfer in transverse 
(see [4]) and longitudinal flows in a thin bed of spheres that a change in its thickness 
differently affects exchange characteristics. With longitudinal flow, the straight lines 
Nu~/Sc I/3 = ARe n (in logarithmic coordinates) remain parallel to each other as the thickness 
(6) increases e h . With transverse flow, the exponent n increases with an increase in the 
number of layers in the bed. This difference is evidence of the anisotropy of convective 
heat and mass transfer in thin beds of spheres. 

In conclusion, we note that the data presented here makes it possible to calculate 
drag, the pressure distribution in isothermal and nonisothermal gas flows, and the coefficients 
of convective heat and mass transfer in longitudinal flow in a thin bed of spheres. The 
results obtained can be useful in theoretically studying transportprocesses in granular 
media. 

NOTATION 

a*, specific surface of the bed of spheres; d, diameter of sphere; D*, molecular dif- 
fusion coefficient; G, mass rate; fe, equivalent drag coefficient; k, permeability; L, 
length of bed; P, pressure; R, universal gas constant; u, filtration velocity; s, variable 
of integration; T, temperature; l, lo, constants; B, mass-transfer coefficient; 6 h = 
(DI -- D2)/d, relative hydraulic diameter; D~, D2, external and internal diameters of the 
channel; p, density; @ = T2/TI, degree of preheating; ~, ~, absolute and kinematic visco- 
sities; e, porosity; Re = ud/~, Reynolds number; Re e = 4ud/a*~, equivalent Reynolds number; 
Nu', Nu, diffusive and thermal Nusselt numbers; Pr, Sc, Prandtl and Schmidt numbers. Indices: 
i, 2, at the inlet and outlet of the bed; wa, value calculated with allowance for the surface 
of the walls. 
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